Using the Mind To Change the Brain

Rick Hanson, Ph.D.

The Wellspring Institute

For Neuroscience and Contemplative Wisdom

www.WiseBrain.org

www.BuddhasBrain.com

drrh@comcast.net

Topics

- Your Amazing Brain
- Self-Directed Neuroplasticity
- Paper Tiger Paranoia
- The Optimal Brain

Common and Fertile Ground

We ask, "What is a thought?"

We don't know,

yet we are thinking continually.

Venerable Tenzin Palmo

Your Amazing Brain

Technical Specs

Size:

- 3 pounds of tofu-like tissue
- 1.1 trillion brain cells
- 100 billion "gray matter" neurons

Activity:

- Always on 24/7/365 Instant access to information on demand
- 20-25% of blood flow, oxygen, and glucose

Speed:

- Neurons firing around 5 to 50 times a second (or faster)
- Signals crossing your brain in a tenth or hundredth of a second

Connectivity:

- A typical neuron makes ~ 5000 connections: ~ 500 <u>trillion</u> synapses.
- During one breath, a quadrillion-plus signals coursed through your head.

Complexity:

Potentially 10 to the millionth power brain states

A Schematic Neuron

Technical Specs

Size:

- 3 pounds of tofu-like tissue
- 1.1 trillion brain cells
- 100 billion "gray matter" neurons

Activity:

- Always on 24/7/365 Instant access to information on demand
- 20-25% of blood flow, oxygen, and glucose

Speed:

- Neurons firing around 5 to 50 times a second (or faster)
- Signals crossing your brain in a tenth or hundredth of a second

Connectivity:

- A typical neuron makes ~ 5000 connections: ~ 500 <u>trillion</u> synapses.
- During one breath, a quadrillion-plus signals coursed through your head.

Complexity:

Potentially 10 to the millionth power brain states

The Mind/Brain System

- "Mind" = flow of information within the nervous system
 - Information is <u>represented</u> by the nervous system.
 - Most mind is unconscious; awareness is <u>part</u> of mind.
 - The headquarters of the nervous system is the brain.
- In essence then, apart from hypothetical transcendental factors, your mind is what your brain does.
- Brain = necessary, proximally sufficient condition for mind.
 - The brain depends on the nervous system, which intertwines with and depends on other bodily systems.
 - These systems in turn intertwine with and depend upon nature and culture, both presently and over time.
 - And as we'll see, the brain also depends on the mind.

The Evolving Brain

Three Goal-Directed Systems Evolved in the Brain

- Avoid "sticks," threats, penalties, pain
- Approach "carrots," opportunities, rewards, pleasure
- Attach to "us," proximity, bonds, feeling close
- Although the three branches of the vagus nerve loosely map to the three systems, the essence of each is its <u>aim</u>, not its neuropsychology.
- Each system can draw on the other two for its ends.

Love and the Brain

- Social capabilities have been a primary driver of brain evolution.
- Reptiles and fish avoid and approach. Mammals and birds attach as well - especially primates and humans.
- Mammals and birds have bigger brains than reptiles and fish.
- The more social the primate species, the bigger the cortex.
- Since the first hominids began making tools ~ 2.5 million years ago, the brain has tripled in size, much of its build-out devoted to social functions (e.g., cooperative planning, empathy, language). The growing brain needed a longer childhood, which required greater pair bonding and band cohesion.

Self-Directed Neuroplasticity

First Fact about Your Brain

As your brain changes, your mind changes.

Second Fact about Your Brain

As your mind changes, your brain changes.

Immaterial mental activity maps to material neural activity.

This produces temporary changes in your brain and lasting ones.

Temporary changes include:

- Alterations in brainwaves (= changes in the firing patterns of synchronized neurons)
- Increased or decreased use of oxygen and glucose
- Ebbs and flows of neurochemicals

The Rewards of Love

Pain network: Dorsal anterior cingulate cortex (dACC), insula (Ins), somatosensory cortex (SSC), thalamus (Thal), and periaqueductal gray (PAG).

Reward network: Ventral tegmental area (VTA), ventral striatum (VS), ventromedial prefrontal cortex (VMPFC),¹⁷ and amygdala (Amyg).

K. Sutliff, in Lieberman & Eisenberger, 2009, Science, 323:890-891

Key Brain Areas for Consciousness

Buddhist Meditation

Christian Nuns in Prayer

Mental Activity Shapes Neural Structure

- The flows of mind sculpt the brain.
- Immaterial information leaves material traces behind:
 - Increased blood/nutrient flow to active regions
 - Altered epigenetics (gene expression)
 - "Neurons that fire together wire together."
 - Increasing excitability of active neurons
 - Strengthening existing synapses
 - Building new synapses; thickening cortex
 - Neuronal "pruning" "use it or lose it"

Lazar, et al. 2005.
Meditation
experience is
associated
with increased
cortical thickness.
Neuroreport, 16,
1893-1897.

The principal activities of brains are making changes in themselves.

Marvin L. Minsky

Perspectives on Neuroplasticity

- Neuroplasticity is not breaking news: For a century or more, it's been presumed that mental activity changed neural structure: what else is learning? (The news is in the details of <u>how</u>.)
- Most neuroplasticity is incremental; occasionally it's dramatic.
- Awareness increases neural structure-building. Residues of conscious experience continually sift into implicit memory.
- Your experience matters. Both for how it feels now and for the lasting threads it weaves into the fabric of your brain and being.
- Most experience is background, in the "simulator." Thus the importance of mindfulness, of <u>searching inside yourself</u>.

The education of attention would be an education <u>par</u> <u>excellence</u>.

William James

Third Fact about Your Brain

With that mindfulness:

You can use the mind to change the brain to change the mind for the better.

Paper Tiger Paranoia

The Negativity Bias

- In our evolutionary history, threats usually had more impact on survival than opportunities. <u>Sticks are more salient than carrots</u>:
 - The amygdala is primed to label experiences negatively.
 - The amygdala-hippocampus system flags negative experiences prominently in memory.
 - The brain is thus like Velcro for negative experiences but Teflon for positive ones.
- Consequently, the Avoid system routinely hijacks the Approach and Attach systems, and "bad is stronger than good":
 - It takes five positive interactions to undo a negative one.
 - People will do more to avoid a loss than get a gain.
 - It's easy to create learned helplessness, but hard to undo.

Negative Experiences Can Have Benefits

There's a place for negative emotions:

- Anxiety alerts us to inner and outer threats
- Sorrow opens the heart
- Remorse helps us steer a virtuous course
- Anger highlights mistreatment; energizes to handle it

Negative experiences can:

- Increase tolerance for stress, emotional pain
- Build grit, resilience, confidence
- Increase compassion and tolerance for others

But is there really any shortage of negative experiences?

One Effect of Negative Experiences: Health Consequences of Chronic Stress

Physical:

- Weakened immune system
- Inhibits GI system; reduced nutrient absorption
- Reduced, dysregulated reproductive hormones
- Increased vulnerabilities in cardiovascular system
- Disturbed nervous system

Mental:

- Lowers mood; increases pessimism
- Increases anxiety and irritability
- Increases learned helplessness (especially if no escape)
- Often reduces approach behaviors (less for women)
- Primes aversion (SNS-HPAA negativity bias)

Self-Compassion

- Compassion is the wish that someone not suffer, combined with feelings of sympathetic concern. Self-compassion simply applies that to oneself. It is not self-pity, complaining, or wallowing in pain.
- Self-compassion is a major area of research, with studies showing that it buffers stress and increases resilience and self-worth.
- But self-compassion is hard for many people, due to feelings of unworthiness, self-criticism, or "internalized oppression." To encourage the neural substrates of self-compassion:
 - Get the sense of being cared about by someone else.
 - Bring to mind someone you naturally feel compassion for
 - Sink into the experience of compassion in your body
- Then shift the focus of compassion to yourself, perhaps with phrases like: "May I not suffer. May the pain of this moment pass."

Major Result of the Negativity Bias: Threat Reactivity

Two mistakes:

- Thinking there is a tiger in the bushes when there isn't one.
- Thinking there is no tiger in the bushes when there is one.
- We evolved to make the first mistake a hundred times to avoid making the second mistake even once.
- This evolutionary tendency is intensified by temperament, personal history, culture, and politics.
- Threat reactivity affects individuals, couples, families, organizations, nations, and the world as a whole.

Results of Threat Reactivity (Personal, Organizational, National)

- Our initial appraisals are mistaken:
 - Overestimating threats
 - Underestimating opportunities
 - Underestimating inner and outer resources
- We update these appraisals with information that confirms them; we ignore, devalue, or alter information that doesn't.
- Thus we end up with views of ourselves, others, and the world that are ignorant, selective, and distorted. 34

Costs of Threat Reactivity (Personal, Organizational, National)

- Feeling threatened feels bad, and triggers stress consequences.
- We over-invest in threat protection.
- The boy who cried tiger: flooding with paper tigers makes it harder to see the real ones.
- Acting while feeling threatened leads to over-reactions, makes others feel threatened, and creates vicious cycles.
- The Approach system is inhibited, so we don't pursue opportunities, play small, or give up too soon.
- In the Attach system, we bond tighter to "us," with more fear and anger toward "them."

Besides its impacts at the personal and organizational level, threat reactivity is a major source of prejudice, oppression, and war.

Reducing threat reactivity is a key way to make this world a better place.

The Optimal Brain

Reverse Engineering the Brain

What is the nature of the brain when a person is:

- In peak states of productivity?
- Self-actualizing?
- Experiencing inner peace?
- Enlightened (or close to it)?

Home Base of the Human Brain

When not threatened, ill, in pain, hungry, upset, or chemically disturbed, most people settle into being:

- Calm (the Avoid system)
- Contented (the Approach system)
- Caring (the Attach system)
- Creative synergy of all three systems

The Responsive Mode

To Survive, We Leave Home . . .

Avoid: When we feel threatened or harmed

Approach: When we can't attain important goals

Attach: When we feel isolated, disconnected, unseen, unappreciated, unloved

This is the brain in its *reactive* mode of functioning - a kind of inner homelessness.

The Reactive Mode

How to come home?

How to recover the natural, responsive mode of the brain?

"Know the Mind, Shape the Mind, Free the Mind"

- Mindfulness, virtue, and wisdom are identified in Buddhism, other contemplative traditions, and Western psychology as central pillars of practice.
- These map to central functions of the nervous system: receiving/learning, regulating, and prioritizing. And map to the three phases of psychological healing and personal growth:
 - Be mindful of, release, replace.
 - Let be, let go, let in.
- Mindfulness is vital, but not enough by itself.

General Factors for Responsive Mode

- Self-compassion
- Getting on your own side
- Mindful self-awareness
- Seeing the world clearly (Google could help here)
- Taking life less personally
- Taking in the good

How to Take in the Good

- 1. Look for positive **facts**, and let them become positive <u>experiences</u>.
- 2. Savor the positive experience:
 - Sustain it for 10-20-30 seconds.
 - Feel it in your body and emotions.
 - Intensify it.
- 3. Sense and intend that the positive experience is soaking into your brain and body registering deeply in emotional memory.

Benefits of Positive Emotions

- The benefits of positive emotions are a proxy for many of the benefits of Taking in the Good.
- Emotions organize the brain as a whole, so positive ones have far-reaching benefits
- These include:
 - Stronger immune system; less stress-reactive cardiovascular
 - Lift mood; increase optimism, resilience
 - Counteract trauma
 - Promote exploratory, "approach" behaviors
 - Create positive cycles

The good life, as I conceive it, is a happy life.

I do not mean that if you are good you will be happy;

I mean that if you are happy you will be good.

Bertrand Russell

Factors for Each Motivational System

Approach system

- Be glad.
- Appreciate your resources.
- Give over to your best purposes.

Affiliate system

- Sense the suffering in others.
- Be kind.
- Act with unilateral virtue.

Avoid system

- Cool the fires.
- Recognize paper tigers.
- Tolerate risking the dreaded experience.

"Taking the Fruit as the Path"

Gladness

Love

Peace

Choices . . .

Or?

Reactive Mode

Responsive Mode

Penetrative insight

joined with calm abiding

utterly eradicates

afflicted states.

Shantideva

Great Books

See www.RickHanson.net for other great books.

- Austin, J. 2009. Selfless Insight: Zen and the Meditative Transformations of Consciousness. MIT Press.
- Begley. S. 2007. Train Your Mind, Change Your Brain: How a New Science Reveals Our Extraordinary Potential to Transform Ourselves. Ballantine.
- Hanson, R. 2009 (with R. Mendius). Buddha's Brain: The Practical Neuroscience of Happiness, Love, and Wisdom. New Harbinger.
- Johnson, S. 2005. *Mind Wide Open: Your Brain and the Neuroscience of Everyday Life*. Scribner.
- Kornfield, J. 2009. The Wise Heart: A Guide to the Uiniversal Teachings of Buddhist Psychology. Bantam.
- LeDoux, J. 2003. Synaptic Self: How Our Brains Become Who We Are. Penguin
- Sapolsky, R. 2004. Why Zebras Don't Get Ulcers. Holt.
- Siegel, D. 2007. The Mindful Brain: Reflection and Attunement in the Cultivation of Well-Being. W. W. Norton & Co.
- Thompson, E. 2007. *Mind in Life: Biology, Phenomenology, and the Sciences of Mind*. Belknap Press.

See www.RickHanson.net for other scientific papers.

- Atmanspacher, H. & Graben, P. 2007. Contextual emergence of mental states from neurodynamics. Chaos & Complexity Letters, 2:151-168.
- Baumeister, R., Bratlavsky, E., Finkenauer, C. & Vohs, K. 2001. Bad is stronger than good. Review of General Psychology, 5:323-370.
- Braver, T. & Cohen, J. 2000. On the control of control: The role of dopamine in regulating prefrontal function and working memory; in *Control of Cognitive Processes: Attention and Performance XVIII*. Monsel, S. & Driver, J. (eds.). MIT Press.
- Carter, O.L., Callistemon, C., Ungerer, Y., Liu, G.B., & Pettigrew, J.D. 2005. Meditation skills of Buddhist monks yield clues to brain's regulation of attention. *Current Biology.* 15:412-413.

- Davidson, R.J. 2004. Well-being and affective style: neural substrates and biobehavioural correlates. *Philosophical Transactions of the Royal Society*. 359:1395-1411.
- Farb, N.A.S., Segal, Z.V., Mayberg, H., Bean, J., McKeon, D., Fatima, Z., and Anderson, A.K. 2007. Attending to the present: Mindfulness meditation reveals distinct neural modes of self-reflection. SCAN, 2, 313-322.
- Gillihan, S.J. & Farah, M.J. 2005. Is self special? A critical review of evidence from experimental psychology and cognitive neuroscience. *Psychological Bulletin*, 131:76-97.
- Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., & Sporns, O. 2008. Mapping the structural core of human cerebral cortex. *PLoS Biology*. 6:1479-1493.
- Hanson, R. 2008. Seven facts about the brain that incline the mind to joy. In Measuring the immeasurable: The scientific case for spirituality. Sounds True. 55

- Lazar, S., Kerr, C., Wasserman, R., Gray, J., Greve, D., Treadway, M., McGarvey, M., Quinn, B., Dusek, J., Benson, H., Rauch, S., Moore, C., & Fischl, B. 2005. Meditation experience is associated with increased cortical thickness. *Neuroreport*. 16:1893-1897.
- Lewis, M.D. & Todd, R.M. 2007. The self-regulating brain: Cortical-subcortical feedback and the development of intelligent action. *Cognitive Development*, 22:406-430.
- Lieberman, M.D. & Eisenberger, N.I. 2009. Pains and pleasures of social life. *Science*. 323:890-891.
- Lutz, A., Greischar, L., Rawlings, N., Ricard, M. and Davidson, R. 2004. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. *PNAS*. 101:16369-16373.
- Lutz, A., Slager, H.A., Dunne, J.D., & Davidson, R. J. 2008. Attention regulation and monitoring in meditation. *Trends in Cognitive Sciences*. 12:163-169.

- Takahashi, H., Kato, M., Matsuura, M., Mobbs, D., Suhara, T., & Okubo, Y. 2009. When your gain is my pain and your pain is my gain: Neural correlates of envy and schadenfreude. *Science*. 323:937-939.
- Tang, Y.-Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., Yu, Q., Sui, D., Rothbart, M.K., Fan, M., & Posner, M. 2007. Short-term meditation training improves attention and self-regulation. *PNAS*. 104:17152-17156.
- Thompson, E. & Varela F.J. 2001. Radical embodiment: Neural dynamics and consciousness. Trends in Cognitive Sciences, 5:418-425.
- Walsh, R. & Shapiro, S. L. 2006. The meeting of meditative disciplines and Western psychology: A mutually enriching dialogue. *American Psychologist*, 61:227-239.